1,3,5-trinitro-1,3,5-triazine decomposition and chemisorption on Al(111) surface: first-principles molecular dynamics study.
نویسندگان
چکیده
We have investigated the decomposition and chemisorption of a 1,3,5-trinitro-1,3,5-triazine (RDX) molecule on Al(111) surface using molecular dynamics simulations, in which interatomic forces are computed quantum mechanically in the framework of the density functional theory (DFT). The real-space DFT calculations are based on higher-order finite difference and norm-conserving pseudopotential methods. Strong attractive forces between oxygen and aluminum atoms break N-O and N-N bonds in the RDX and, subsequently, the dissociated oxygen atoms and NO molecules oxidize the Al surface. In addition to these Al surface-assisted decompositions, ring cleavage of the RDX molecule is also observed. These reactions occur spontaneously without potential barriers and result in the attachment of the rest of the RDX molecule to the surface. This opens up the possibility of coating Al nanoparticles with RDX molecules to avoid the detrimental effect of oxidation in high energy density material applications.
منابع مشابه
Reaction mechanism from quantum molecular dynamics for the initial thermal decomposition of 2,4,6-triamino-1,3,5-triazine-1,3,5-trioxide (<compoundref idrefs="chemMTO">MTO) and 2,4,6-trinitro-1,3,5-triazine-1,3,5-trioxide (<compoundref idrefs="chemMTO3N">MTO3N), promising green energetic materials
Klapötke and co-workers recently designed two new materials, 2,4,6-triamino-1,3,5-triazine-1,3,5-trioxide (MTO) and 2,4,6-trinitro-1,3,5-triazine-1,3,5-trioxide (MTO3N), envisioned as candidates for green highenergy materials. However, all attempts at synthesis have failed. In order to validate the expected properties for these systems and to determine why these materials are too unstable to sy...
متن کاملPrediction of structures and properties of 2,4,6-triamino-1,3,5-triazine-1,3,5-trioxide (MTO) and 2,4,6-trinitro-1,3,5-triazine-1,3,5-trioxide (MTO3N) green energetic materials from DFT and ReaxFF molecular modeling
2,4,6-Triamino-1,3,5-triazine-1,3,5-trioxide (MTO) and 2,4,6-trinitro-1,3,5-triazine-1,3,5-trioxide (MTO3N) were suggested by Klapötke et al. as candidates for green high energy density materials (HEDM), but a successful synthesis has not yet been reported. In order to predict the properties of these systems, we used quantum mechanics (PBE flavor of density functional theory) to predict the mos...
متن کاملThe Mechanism for Unimolecular Decomposition of RDX (1,3,5-Trinitro-1,3,5-triazine), an ab Initio Study
Gas phase hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a relatively stable molecule which releases a large amount of energy upon decomposition. Although gas-phase unimolecular decomposition experiments suggest at least two major pathways, there is no mechanistic understanding of the reactions involving RDX or other energetic molecules (such as HMX and TATB), used in applications ranging fro...
متن کاملمروری بر روشهای سنتز، خواص فیزیکی و انفجاری برخی هتروسیکلهای پرانرژی با اتصال آزو
In this study, the recent developments in the synthesis of some azo- linked high- nitrogen energetic heterocycles such as tetrazole, triazole, imidazole, pyrazole, triazine, tetrazine and their salts will be investigated. These energetic compounds generally exhibit desirable properties and performance, which in some cases are superior to the conventional energetic materials such as hexahydro-1,...
متن کاملBiodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine and its mononitroso derivative hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine by Klebsiella pneumoniae strain SCZ-1 isolated from an anaerobic sludge.
In previous work, we found that an anaerobic sludge efficiently degraded hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), but the role of isolates in the degradation process was unknown. Recently, we isolated a facultatively anaerobic bacterium, identified as Klebsiella pneumoniae strain SCZ-1, using MIDI and the 16S rRNA method from this sludge and employed it to degrade RDX. Strain SCZ-1 degrad...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 126 23 شماره
صفحات -
تاریخ انتشار 2007